Epigenetics provides new insights into the pathogenesis of lymphoma

In collaboration with scientists from the Austrian Institute of Technology (AIT), the University of Cambridge and the University of Southern California (USC), molecular biologist Melanie Hassler from the working group led by Gerda Egger (Department of Pathology at MedUni Vienna, Division of Experimental Pathology, Head: Lukas Kenner) has analysed the methylation pattern of Anaplastic Large … Continue reading “Epigenetics provides new insights into the pathogenesis of lymphoma”

In collaboration with scientists from the Austrian Institute of Technology (AIT), the University of Cambridge and the University of Southern California (USC), molecular biologist Melanie Hassler from the working group led by Gerda Egger (Department of Pathology at MedUni Vienna, Division of Experimental Pathology, Head: Lukas Kenner) has analysed the methylation pattern of Anaplastic Large Cell Lymphoma (ALCL), an aggressive non-Hodgkin lymphoma that primarily affects children and young adults. ALCL is a very aggressive form of leukemia, which usually manifests itself as tumours in the lymph nodes, skin, lungs, liver and soft tissues.

However, in the paper that was recently published in the leading journal Cell Reports, the researchers were able to use the methylation pattern to show that — contrary to what we previously thought — ALCL resembles early T-cell development in the thymus gland, which is part of the lymphatic system. Moreover, due to epigenetic silencing, these lymphomas lack important T-cell-specific factors for cell development and differentiation. Hassler explains: “Certain drugs that interfere in the methylation programme of cancer cells could be used in future to adjust the methylation pattern of ALCL cells to that of healthy T-cells, thereby arresting tumour growth.”

A better understanding of ALCL

Egger: “The results of this study have given us a better understanding of the development of ALCL in children and adolescents, so that in future we will be able to attack cancer cells in a targeted way, using epigenetic therapies. Furthermore, decoding of the methylation pattern of ALCL provides us with a basis for establishing biomarkers in the area of personalised and translational medicine.” Gerda Egger heads up the epigenetics working group at the Department of Pathology and is Deputy Director at the Ludwig Boltzmann Institute for Applied Diagnostics.

Author: Joe Lovrek

Born in Houston, Raised in Trinity Texas

Leave a Reply