First multicellular organism inspires the design of better cancer drugs

To engineer the supramolecular therapeutics, the researchers developed a first-of-its-kind computational algorithm that simulates how anticancer molecules interact with each other at the molecular and atomic level. This understanding led to the design of the most optimal building blocks that can click with each other like LEGO blocks to form the supramolecular therapeutic. The researchers … Continue reading “First multicellular organism inspires the design of better cancer drugs”

To engineer the supramolecular therapeutics, the researchers developed a first-of-its-kind computational algorithm that simulates how anticancer molecules interact with each other at the molecular and atomic level. This understanding led to the design of the most optimal building blocks that can click with each other like LEGO blocks to form the supramolecular therapeutic. The researchers have named this computational algorithm Volvox after the biological organism.

Ashish Kulkarni, PhD, an instructor in the Division of Engineering in the Department of Medicine at the Brigham and Women’s Hospital, and the lead author of the paper published in September issue of ACS Nano, said, “The algorithm saves a lot of time during the development of next generation cancer therapy. Before we even go into experimental analysis, we are able to see whether or not there is a high enough concentration of the drug for the treatment to be effective. We hope that our method can eventually be used to treat many different types of cancer.”

“This is an exciting example where nature has inspired the design of a new way to treat cancer,” said Shiladitya Sengupta, BWH associate bioengineer and assistant professor of medicine at Harvard Medical School, who led the interdisciplinary team. “We have shown that this technology can be used to develop a wide range of supramolecular therapeutics.”

Author: Joe Lovrek

Born in Houston, Raised in Trinity Texas

Leave a Reply