One-step tumor detection from dynamic morphology tracking on aptamer grafted surface

The report appears in the December 2015 issue of the journal TECHNOLOGY. Cell motility is a phenomenon, where cells move by protruding and contracting sections of the membrane. This is a complex process performed through sophisticated balancing act between internal cytoskeleton structure and the cell membrane proteins. Cancer cells are known to be abnormally flexible … Continue reading “One-step tumor detection from dynamic morphology tracking on aptamer grafted surface”

The report appears in the December 2015 issue of the journal TECHNOLOGY.

Cell motility is a phenomenon, where cells move by protruding and contracting sections of the membrane. This is a complex process performed through sophisticated balancing act between internal cytoskeleton structure and the cell membrane proteins. Cancer cells are known to be abnormally flexible than the healthy cells, primarily due to their inherent weak structures. The forces between the cytoskeleton and the cell surface proteins are different between cancerous and healthy cells. The surface receptors are also abnormally many more on the surface of cancer cells. The human glioblastoma (hGBM) cells thus showed distinctly enhanced cell movements and activity on the RNA functionalized chips.

“The initial results that are shown here hold great potential for applications like cancer screening. A multiple chip based device targeting several proteins can lead to a generic cancer diagnostic platform. The advantage of the technology compared to others is that it is suitable for a quick diagnosis Once matured, the method has potential to serve as an additional modality to identify tumor cells based on their physical behavior from blood samples or biopsy specimen directly drawn from patients.” says Professor Samir Iqbal, Ph.D., of the UT Arlington and Principal Investigator on the paper.

Authors of the TECHNOLOGY paper are Mohammed Arif Mahmood, Mohammad Raziul Hasan, Umair Khan, Young-tae Kim and Samir Iqbal from Nano-Bio Lab of UT Arlington and Peter Allen and Andrew Ellington from Institute for Cell and Molecular Biology at UT Austin.

Author: Joe Lovrek

Born in Houston, Raised in Trinity Texas

Leave a Reply